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Abstract. Within mean field approximation, a procedure is elaborated to consider noise induced phase
transitions with arbitrary relations between the noises of different degrees of freedom. The proposed ap-
proach is applied to investigate effects of cross correlation between noises in the generalized synergetic
model of Lorenz type. This cross correlation is shown to induce phase transitions of the dynamical system
under consideration. Additionally, we find the correlation between noises transforms a synergetic behavior
to a thermodynamic one.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise and Brownian motion –
47.20.Ky Nonlinearity (including bifurcation theory)

Introduction

The prominent effect of noise on systems far off equi-
librium attracted much attention from scientists in the
last few decades. There are many physical situations in
which the noise exhibits a constructive role in the be-
havior of nonlinear systems. Recently, noise was demon-
strated to lead to a host of new amazing phenomena
in such systems: noise induced unimodal-bimodal transi-
tions in zero-dimensional models [1], noise induced phase
transitions with a symmetry and ergodicity breaking in
extended systems [2–5], stochastic resonance [6,7], noise
induced pattern formation [8] (for review, see [4] and ci-
tations therein).

A lot of attention has been devoted currently to the
study of reentrant noise induced phase transitions where
the ordered state is characterized by a nonzero order pa-
rameter and exists only inside a window of control param-
eters, noise intensities and coupling constant. Recently,
the ordering of the system has been shown to be the con-
sequence of the interplay between the noise, the spatial
coupling and the nonlinearity [3,5,9,10]. In particular, if
at every single site a noise generates a short time insta-
bility, a spatial coupling can derive to a non-trivial stable
state. In such a situation, naive predictions based on a
deterministic analysis appear to be far from reliable.

Usually, for the sake of simplicity, only special models
are considered either of additive noise or multiplicative
noise with intensity in the form of linear function and
with bare xm-potential (m > 3) [4]. Suitable choice of de-
terministic drift and noise amplitude is shown to lead to
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both continuous and discontinuous bifurcations which are
associated with the second or first order phase transitions,
respectively. It is in good correspondence with the Landau
theory of phase transitions where a form of the free en-
ergy potential defines the order of phase transition. Much
more complicated approaches have been implemented to
consider both white and coloured noises but cross cor-
relations between different fluctuations do not take into
account [2,3,5].

An interesting problem, which is treated in our paper,
is understanding the role of such a cross correlation in
stochastic systems: understanding whether they exert an
influence on phase transitions or not. Usually, one holds
the opinion that cross correlation introduces only weak
corrections to results obtained for uncorrelated fluctua-
tions. In this work, we wish to show the crucial role of cross
correlation between fluctuations and show that they can
lead to change in the order of phase transitions. Because
such a problem can not be solved correctly by using the
standard methods based on the Novikov theorem [11] or
the unified coloured noise approximation [5,12], we derive
a clear scheme to account for the above correlations on the
basis of the cumulant expansion method proposed by Van
Kampen [13] and developed in reference [14]. As a result
of this, a perturbation theory is constructed with a small
parameter being an auto or cross correlation time of dif-
ferent noise. The derived procedure is applied to a three-
parameter Lorenz system with correlated noises. Such cor-
relation is shown to lead the dynamical system to a chain
of phase transitions being relevant rather to a thermo-
dynamic picture than a synergetic one that is related to
uncorrelated fluctuations.
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Approximation method

Let us focus on an extended system where evolution of
physical quantity is given by the Langevin equation

∂x(r, t)
∂t

= f(x) + D∆x +
∑

µ

gµ(x)ξµ(r, t), (1)

here the index µ denotes number of Langevin forces acting
with amplitudes gµ(x); f(x) = −∂V/∂x is the force that
drives the system which is defined with the help of bare
potential V (x); the effect of spatial coupling with the con-
stant D is presented through the Laplacian ∆ ≡ ∂2/∂r2.
In many physical systems x = x(r, t) is a coarse-grained
field, representing the local density of a relevant physical
variable (relative concentration in a binary alloy, magne-
tization, etc.). As usual, a disordered state (phase) corre-
sponds to x(r, t) = 0 (homogeneous mixture in alloys), an
ordered state is given by x(r, t) �= 0.

Considering a stochastic system with more than one
noise one has to deal with an effect of correlation between
noises. Let us assume that noises are Gaussian distributed,
white in space with zero mean and

〈ξµ(r, t)ξν(r′, t′)〉 = δ(r − r′)Cµ,ν(t − t′), (2)

here for correlation functions one has Cµ,ν(t, t′) =
Cν,µ(t, t′).

To explore the picture of noise induced phase transi-
tions one needs to determine the order parameter η = 〈x〉
where angle brackets denote an averaging over probabil-
ity density P (x, t). Therefore, we need to find the distribu-
tion function P (x, t) at first. For this purpose we represent
the system in the regular d-dimension lattice of mesh size
∆l = 1

ẋi = fi +
D

2d

∑
j

D̂ijxj +
∑

µ

gµiξµi(t), (3)

where fi = f(xi), gµi = gµ(xi); here the definition of the
Laplacian operator on the grid is used

∆ →
∑

j

D̂ij =
∑

j∈nn(i)

(δnn(j) − 2dδij). (4)

To construct an equation for the probability density we
exploit a conventional device and proceed from the conti-
nuity equation

∂

∂t
ρ({xi}, t) = −

∑
i

∂

∂xi
(ẋiρ({xi}, t)). (5)

The probability density function is given by the averaging
over noise, i.e. P ({xi}, t) = 〈ρ({xi}, t)〉. Inserting the time
derivative from equation (3) into equation (5) we have

∂

∂t
ρ({xi}, t) = −

∑
i

[
L̂i − ∂

∂xi

∑
µ

gµiξµi

]
ρ({xi}, t),

(6)

where

L̂i =
∂

∂xi

fi +
∑

j

D̂ijxj

 . (7)

In the interaction representation

℘ =
∑

i

eL̂itρ. (8)

Equation (6) is reduced to the form

∂

∂t
℘ = −

∑
i

eL̂it
∂

∂xi

∑
µ

gµiξµie−L̂it℘

≡
∑

i

∑
µ

εµRµ(xi, t)℘, (9)

where the corresponding small parameter εµ measures
a value of fluctuations defined through the noise inten-
sity and correlation scale. A standard and effective device
to solve such a type of stochastic equation is the well-
known cumulant expansion method, developed by Van
Kampen [13]. Neglecting terms of the order O(ε3), in the
main approximation we get the following kinetic equation:

∂

∂t
〈℘〉 =

∑
i

∑
µ,ν

εµεν

∫ t

0

〈Rµ(xi, t)Rν(xi, t
′)〉〈℘〉dt′. (10)

In the original representation for the probability density
P ({xi}, t) equation (10) reads

∂

∂t
P ({xi}, t) =

∑
i

[
− L̂iP ({xi}, t)

+
∂

∂xi

∑
µ,ν

gµi

t∫
0

Cµν(t, t′)e−L̂i(t−t′) ∂

∂xi
gνiP ({xi}, t′)dt′

]
.

(11)

For t � τµ, where τµ is the corresponding correlation
scale, we can put 〈ρ({xi}, t′)〉 = 〈ρ({xi}, t)〉 and the upper
limit of the integration taken, ∞. This yields

∂

∂t
P =

∑
i

[
− L̂i

+
∑
µ,ν

L̂
(0)
µi

∫ ∞

0

Cµν(t, t − τ)e−L̂itL̂
(0)
νi eL̂itdτ

]
P, (12)

here we use a notation

L̂
(0)
µi ≡ ∂

∂xi
gµi =

∂

∂xi
gµ(xi) (13)

and put P ≡ P ({xi}, t). Expanding exponents one arrives
at the following perturbation expansion

∂

∂t
P =

∑
i

[
− ∂

∂xi

fi +
∑

j

D̂ijxj


+

∞∑
n=0

∑
µ,ν

L̂
(0)
µi C(n)

µν L̂
(n)
νi

]
P, (14)
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where moments of the correlation function are

C(n)
µν =

1
n!

∫ ∞

0

τnCµν(t, t − τ)dτ. (15)

Operators L̂
(n)
ν are defined through the commutator

L̂
(n)
µi =

[
L̂

(n−1)
µi , L̂i

]
. (16)

The first order approximation yields

L̂
(1)
µi =

∂

∂xi
gµi

∂

∂xi

fi +
∑

j

D̂ijxj


− ∂

∂xi

fi +
∑

j

D̂ijxj

 ∂

∂xi
gµi. (17)

According to obtained expressions the zero-order contri-
bution of correlations gives the expected terms for the
Kramers-Moyal expansion [15]

D(0)
1 =

∑
µ,ν

C(0)
µν gµi

∂gνi

∂xi
,

D(0)
2 =

∑
µ,ν

C(0)
µν gµigνi; (18)

a contribution of first order terms gives

D(1)
1 =

∑
µ,ν

C(1)
µν

∂gνi

∂xi

fi +
∑

j

D̂ijxj

 ∂gµi

∂xi

+gµi
∂

∂xi

fi +
∑

j

D̂ijxj

 ,

D(1)
2 =

∑
µ,ν

C(1)
µν gνi

fi +
∑

j

D̂ijxj

 ∂gµi

∂xi

+gµi
∂

∂xi

fi +
∑

j

D̂ijxj

 . (19)

Therefore, the effective Fokker-Planck equation in the
form of the Kramers-Moyal expansion reads

∂

∂t
P =

∑
i

∂

∂xi

[
−D1(xi) +

∂

∂xi
D2(xi)

]
P, (20)

here the drift and the diffusion coefficients are given by

D1(xi) = fi +
∑

j

D̂ijxj +
∑
n=0

D(n)
1 (xi),

D2(xi) =
∑
n=0

D(n)
2 (xi). (21)

Integrating equation (20) over all variables, with the
exception of xi, and using the fact that the steady state

properties are isotropic and translationally invariant, one
obtains the following stationary equation for the one-site
probability:

0 =
∂

∂xi

[
−D1(xi) +

∂

∂xi
D2(xi)

]
P (xi). (22)

Here we exploit representations of the mean field theory
and for the interaction term we get∑

j

D̂ijxj = D(η − xi), (23)

where

η ≡ η(xi) =
∫

xjP (xj |xi)dxj , j ∈ nn(j), (24)

is the steady state conditional average of xj at a neighbor-
ing site j ∈ nn(j), given the value xi at site i. The con-
ditional average η is the order parameter for the noise in-
duced phase transition. The value of η can be defined from
the self-consistency condition (we drop the subscript i for
simplicity of notation)

η =

∞∫
−∞

xP (x; η)dx ≡ F(η), (25)

where P (x; η) is the solution of the time-independent
Fokker-Planck equation. According to equation (22) the
stationary distribution takes the form

P (x, η) = Z−1(η)D−1
2 (x, η) exp

 x∫
0

D1(x′, η)
D2(x′, η)

dx′

 ,

(26)
where

Z(η) =

∞∫
−∞

dxD−1
2 (x, η) exp

 x∫
0

D1(x′, η)
D2(x′, η)

dx′

 . (27)

In order to study noise induced phase transitions the so-
lutions of the self-consistent equation (25) and equation
of the phase diagram

dF(η)
dη

∣∣∣∣
η=0

= 1. (28)

should be considered. Equation (28) has always a
root η = 0. Nontrivial roots differ only in sign for
dF/dη|η=0 > 1.

Three-parameter synergetic model

We apply the presented method to consider the behavior
of generalized Lorenz-type model with noise of each of
degrees of freedom:

τxẋ = −x + γh + D∆x + ζx(r, t),

τhḣ = −h + ahxε + ζh(r, t),
τεε̇ = ε0 − ε − aεxh + ζε(r, t). (29)
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Here, the first terms on the right-hand sides reflect the au-
tonomous relaxation of the quantities order parameter x,
conjugate field h and control parameter ε to their respec-
tive stationary values x = 0, h = 0 and ε = ε0; τx, τh and
τε are related relaxation times; the positive constants γ,
ah, aε are the measures of feedbacks; D is the coupling
constant. Stochastic terms ζx, ζh and ζε account internal
fluctuations which are Gaussian distributed with for ex-
ponentially decaying temporal correlations

Cµ,ν(t, t′) =
σµσν

τµ,ν
exp

(
−|t − t′|

τµ,ν

)
, (30)

where µ, ν = {x, h, ε}. These arise as solutions of an un-
coupled set of Langevin equations

τµζ̇µ = −ζµ + σµξµ(r, t) (31)

with white noise ξµ(r, t) whose amplitudes are σµ.
It is principally important that presented system man-

ifests the Le Chatelier principle: since self-organization is
caused by the growth of the control parameter ε, then the
order parameter x and conjugate field h have to vary in
such a way to resist the growth of ε. This is caused by the
negative feedback between x and h. The positive feedback
between x and ε leads to an increase in the conjugate field
h and is the reason for self-organization of the system. The
homogeneous noiseless system (29) was proposed initially
to describe the instabilities in laser systems (see [16]); it
appeared later to describe exhaustively phase transitions
in synergetic systems [17]; the noisy model was proposed
quite recently to present the self-organized criticality [18].

In a general case we can define the slow and fast modes
to apply to an adiabatic elimination procedure. Usually,
the order parameter appears to be the slow variable, there-
fore, we can set the condition τx � τh, τε. Using the second
and third equations (29) we can write the conjugate field
and control parameter as simple algebraic functions of the
order parameter [17]. As a result, we get the equation of
motion for the slow variable in the form

ẋ = f(x) + D∆x +
∑

µ

σµgµζµ(r, t), (32)

where the deterministic force f(x) = −∂V (x)/∂x and
noise amplitudes are given by the following equalities:

V (x) =
1
2

[
x2 − θ ln(1 + x2)

]
, θ ≡ ε0

γτxah
(33)

gx = 1, gh = (1 + x2)−1, gε = xgh. (34)

So, the generalized Lorenz scheme allows one to generate a
nontrivial model of stochastic system in the simplest way.
In the limit x 	 1, the potential V (x) may be expanded
into the Landau-like x4-potential, whereas the multiplica-
tive functions gε, gh take the linear form at constant values
of gx.

Our further approach follows the mean field approxi-
mation which replaces the term defining ultimate acts of
interactions with the effective interaction force:

fint(x, η) ≡ D(η − x) (35)

where η is the order parameter that we define according
to the self-consistent equation (25).

For the sake of mathematical simplicity, we consider
two non-zeroth noises only: the fluctuations of the slow
variable x and the same of the control parameter ε (it
is easy to see such a choice generalizes some particular
cases). Moreover, to reduce the number of parameters, we
assume the additive noise to be weak-coloured, i.e.

C(0)
x,x = σ2

x, C(1)
x,x = 0. (36)

For the multiplicative noise, nontrivial moments are as
follows:

C(0)
ε,ε = σ2

ε , C(1)
ε,ε = τσ2

ε , τ ≡ τε,ε. (37)

Respectively, moments of the corresponding cross correla-
tion function read:

C(0)
x,ε = σxσε, C(1)

x,ε = τcσxσε, τc ≡ τx,ε. (38)

Next, we consider, within mean field approach, the
noise influence on the system behavior in the cases of both
uncorrelated and correlated fluctuations.

Uncorrelated fluctuations

In this case, we start with Cx,ε(t, t′) = σxσεδ(t − t′). In
order to suppress correlations defined through the Novikov
theorem [11] we put C

(0)
x,ε = 0 that derives to the standard

Fokker-Planck equation with independent noises. Thereby,
the terms appearing in equation (20) can be computed to
be

D(0)
1 = σ2

ε gε
∂gε

∂x
,

D(1)
1 = σ2

ε τ
∂gε

∂x

∂

∂x
gε (f + fint) , (39)

D(0)
2 = σ2

x + σ2
ε g2

ε ,

D(1)
2 = σ2

ε τgε
∂

∂x
gε (f + fint) . (40)

Inserting D1, D2 into equation (26) and then the result
into equation (28), we get an equation for the phase dia-
gram. A related solution is shown in Figure 1 where letters
“O” and “D” denote the domains of ordered and disor-
dered phases. The ordered phase is seen to be realized at
large values of the control parameter θ, so that the noise
induces a transition of a second order from the ordered
phase to disordered with its intensity increase. Another
conclusion is that the system is ordered at large values of
the coupling constant D, and becomes disordered when
parameter D decreases. Thus, we arrive at the standard
synergetic picture of phase transition where the system
becomes ordered when the control parameter increases.
As shown in Figure 2, the order parameter η increases
monotonically beyond the critical magnitudes of θ and D.
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Fig. 1. Phase diagram at σ2
x = 1.0, τ = 0.01: curves 1, 2

correspond to D = 0.9, D = 0.5.
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Fig. 2. Order parameter η vs. the control parameter θ and the
coupling constant D at σx = σε = 1.0, τ = 0.01.

Effect of cross correlations

The most interesting picture of noise induced phase tran-
sition can be found when the noises are correlated. Taking
into account terms in equations (18, 19) with τc �= 0, we
receive

D(0)
1 = σε(σx + σεgε)

∂gε

∂x
,

D(1)
1 = σε

∂gε

∂x

∂

∂x
[(τcσx + τσεgε) (f + fint)] , (41)

D(0)
2 = σ2

ε [σxσ−1
ε (σxσ−1

ε + 2gε) + g2
ε ],

D(1)
2 = σ2

ε

[
σxσ−1

ε τc

(
∂

∂x
gε + gε

∂

∂x

)
(f + fint)

+τgε
∂

∂x
gε (f + fint)

]
. (42)

Then, the related equation for the phase diagram arrives
at the picture shown in Figure 3 where the control pa-

b

0.4 0.8 1.2 1.6

Θ 

1.0

2.0

3.0

4.0

10.0

20.0

c

0.0 0.4 0.8 1.2 1.6

1.0

2.0

3.0

4.0

10.0
15.0
20.0

a

0.0 0.4 0.8 1.2 1.6

2.0

4.0

6.0

8.0

10.0

σ
ε

M

O

D

D

σ
ε

Θ 

Θ 

σ
ε

D

D

D

D

M

M

O

M

M

O

2

2

2

Fig. 3. Phase diagram at σx = 1.0, τ = 0.01: a) D = 0.9,
τc = 0.05; b)D = 0.9, τc = 0.01; c) D = 0.95, τc = 0.01.

rameter θ is built as the function of the multiplicative
noise intensity σ2

ε at different values of the coupling con-
stant D and the noise cross correlation time τc. Here, we
show change of the domain forms related to stable or-
dered (O), disordered (D) and metastable (M) ordered
phases. A characteristic peculiarity of the obtained phase
diagrams is the appearance of the reentrant transitions
with respect to variation of the control parameter θ and
the noise intensity σ2

ε : for a range of values of D and τc,
an ordered state can exist only within intervals of magni-
tudes θ and σε bounded from below and from above. By
this way, the picture of phase transitions is enriched by
the appearance of a metastable domain being the artefact
of the first order phase transitions. The main peculiarities
of the system’s behavior are as follows. (i) An increase in
the cross correlation time τc is accompanied by extending
the domain of the metastable phase (see Figs. 3a, b). (ii)
The size of the domain of the disordered phase decreases
when the values of intensity of spatial coupling D increases



380 The European Physical Journal B

(Figs. 3b, c). According to Figure 3a, at small magnitudes
σε the disordering phase transition is reentrant with re-
spect to θ, where a bifurcation at small θ corresponds to a
second order transition, whereas the next bifurcation re-
lates to the first order one. On the other hand, at large
values of σε we have a chain of first order phase transitions
only. For large values τc, the disordering reentrant phase
transitions of the first order are realized on variation of
the parameter σε if the control parameter is located in
the window [θ1, θ2].

It is principally important to note that the Fig-
ures 3b, c show that at small τc two domains of metastable
states exist. The bifurcation with respect to variation of
the control parameter θ which corresponds to the second
order phase transition occurs at both small and large val-
ues of σε. At intermediate values of the noise intensity, the
order of the reentrant phase transition is transformed into
the first order. At small values θ the phase transitions with
respect to variation of σε are of the second order, whereas
at large θ such transitions transform to the first order due
to the domain appearance of the metastable state. At in-
termediate values of θ a phase transition disappears and
the system is disordered always.

According to the self-consistency equation, the order
parameter η varies in dependence of the control parame-
ter θ as is plotted in Figure 4 for different values of σε.

Such a behavior is determined by the main contribu-
tion into equation (25) given by the zero-order term C

(0)
x,ε .

Let the additive noise intensity be fixed, whereas the in-
tensity of the multiplicative noise of the control parameter
takes on increasing values. Then, at small σε (Fig. 4a) the
order parameter takes a nontrivial magnitude at small val-
ues of the control parameter where the ordered phase is
stable. A further increase in θ brings the system to dis-
order by means of a second order phase transition. Due
to the bifurcation, there are two positive branches of the
solution of equation (25) at large values of θ. Here, the
system undergoes a transition of the first order. The dou-
ble reentrance is observed when we increase the intensity
of the multiplicative noise (Fig. 4b). Here, at precritical
values θ < θc there is a stable ordered state only; a further
increase of the parameter θ results in the appearance of
a branch of unstable state which exists till θ < θ01. At
θ01 < θ < θ02 the system is disordered. A discontinuous
transition toward order is observed at θ = θ02 and the
order parameter has a nontrivial magnitude till θ < θ03.
An increase in the noise intensity of the control parame-
ter transforms a discontinuous transition at small θ to a
continuous one (Fig. 4c). Finally, further increase in the
noise intensity suppresses the ordering processes at small
values of θ keeping the discontinuous ordering within in-
termediate domain θ02 < θ < θ03 (Fig. 4d).

The principal peculiarity of the presented picture of a
reentrant phase transition is that it appears only within
the window D 
 0.85 ÷ 0.95 of the coupling constant
(σx 
 1.0, τ = τc 
 10−2). The size of this domain de-
pends on the noise intensities and cross correlation time τc.
Out of this domain, at small values D, the second order
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Fig. 4. Order parameter vs. the control parameter at σx = 1.0,
τ = τc = 0.01, D = 0.9: a) σ2

ε = 0.09; b) σ2
ε = 1.0; c) σ2

ε = 1.69;
d) σ2

ε = 1.96.

phase transition is realized (Fig. 5a), whereas at large D
one has the first order one (Fig. 5b). Such a picture is op-
posite to the system behavior in the case of uncorrelated
fluctuations. Indeed, in accordance with above noted, the
situation of uncorrelated noise corresponds to the stan-
dard synergetic approach of the phase transition, whereas
the case of correlated noise is in good correspondence with
a thermodynamic approach where an increase in the con-
trol parameter, being a generalized temperature, destroys
the ordered phase. Details of such behavior are as follows.
First, the noise cross correlation inspires the ordering pro-
cesses at small and large θ only. Second, an increase in
the noise intensity destroys the ordered phase at small θ.
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Fig. 5. Order parameter vs. the control parameter at σx =
σε = 1.0, τ = τc: a) D = 0.5; b) D = 1.2.

Third, the role of the coupling constant D is to suppress
the disordered phase at intermediate values of the control
parameter. Therefore, processes of spatial coupling are in
competition with noise influence. If contributions of both
the spatial coupling and fluctuations are comparable, we
get the picture of reentrant noise induced phase transition
presented above.

The cross correlation of noises of the order and control
parameters is shown to transform the second order phase
transition into the first one. Then, the question arises: at
what magnitudes of the coupling constant and the control
parameter noise intensity the phase transition is of a first
order? In Figure 6 we plot the relevant phase diagram for
small values θ (at large control parameter θ, only the first
order transitions are realized). It can be seen that phase
transitions of the second order are realized at small values
of both parameters D and σ2

ε . Within both domains of
small values σ2

ε (at large D) and large σ2
ε (at small D),

an increase in the coupling constant leads to the first or-
der phase transitions, whereas an increase in the cross
correlation time causes the second order one. The critical
magnitude of the coupling constant decreases when the
autocorrelation time of the multiplicative noise increases.

Conclusion

This work has focused on the effect of cross correlation
between fluctuations and devoted to study the role of such
correlation. Through the use of the cumulant expansion
method and mean field approximation we have derived the
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Fig. 6. Phase diagram of transformation of the order noise-
induced phase transitions at σx = 1.0: 1 – τ = 0.05, τc = 0.1;
2 – τ = τc = 0.05; 3 – τ = 0.001, τc = 0.05.

effective Fokker-Planck equation to describe the statistical
properties of the system with correlated fluctuations.

The main results are as follows: (i) cross correlation be-
tween noise of different degrees of freedom cause the chain
of reentrant phase transitions of the first order; (ii) such
cross correlation changes the order of phase transitions;
(iii) the reentrance effect is caused by the competition
between the noise correlation and the spatial coupling;
(iv) uncorrelated noises are relevant to the second order
phase transition inherent in the synergetics; (v) cross cor-
relation between noise leads to phase transitions related
to the thermodynamics.

Authors are thankful to Prof. A.I. Olemskoi for fruitful discus-
sions of this work and attentive reading the manuscript.
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8. K.R. Elder, J. Viñas, M. Grant, Phys. Rev. Lett. 68, 3024

(1992)
9. D.O. Kharchenko, Physica A 308, 101, (2002)

10. D.O. Kharchenko, S.V. Kohan, B 29, 97, (2002)



382 The European Physical Journal B

11. E.A. Novikov, Sov. Phys. JETP 20, 1290, (1965)
12. P. Jung, P. Hänggi, Phys. Rev. A 35, 4467, (1987); F.

Castro, H.S. Wio, G. Abramson, Phys. Rev. E 52, 159,
(1995)

13. N.G. Van Kampen, Stochastic Processes in Physics and
Chemistry (North-Holland, Amsterdam, 1992)

14. V.E. Shapiro, Phys. Rev. E 48, 109, (1993)

15. H. Risken, The Fokker-Plank equation (Springer-Verlag,
Berlin, 1989)

16. H. Haken, Synergetics, An Introduction (Springer-Verlag,
Berlin, 1983)

17. A.I. Olemskoi, A.V. Khomenko, JETP 83, 1180, (1996)
18. A.I. Olemskoi, A.V. Khomeko, D.O. Kharchenko, Physica

A 3, 323 (2003)


